Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 88(7): 2780-2795, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37309590

RESUMO

Cow's milk (CM) allergy is a common food allergy that seriously impacts the growth and development of infants and children. However, CM is an important source of nutrients, and few studies focus on the effects of enzymatic hydrolysis treatment on the whole skimmed CM system. In this study, the IgG/IgE-binding and functional properties of Alcalase-, Protamex-, and Flavourzyme-treated skimmed CM (AT, PT, and FT, respectively) were systematically evaluated. The results showed that the treatment groups were mainly composed of low molecular weight (MW) peptides (<3 kDa), accounting for 94.85%-97.90%. Additionally, the IgG reactivity of these peptides was significantly lower (p < 0.05) than those of higher MW peptides (10-30 kDa and >30 kDa). The IgE reactivity of FT with higher MW peptides was the lowest among these groups, with the OD value reaching 0.089. Moreover, the total amino acid content of hydrolysates of skimmed CM (HM) increased significantly (skimmed CM, 5.94 µg/mL; AT, 123.70 µg/mL; PT: 136.20 µg/mL; FT, 988.72 µg/mL) compared to that in skimmed CM. A total of 10, 10, and 7 flavor compounds were increased in AT, PT, and FT, respectively. Furthermore, the solubility, foamability, and emulsifying ability of HM were significantly improved, being 2.17-fold, 1.52-fold, and 1.96-fold higher in PT than in skimmed CM. These results lay a theoretical foundation for the development of hypoallergenic dairy products.


Assuntos
Hipersensibilidade a Leite , Leite , Animais , Bovinos , Feminino , Leite/química , Hidrólise , Hipersensibilidade a Leite/prevenção & controle , Peptídeos/química , Imunoglobulina E , Imunoglobulina G/análise , Proteínas do Leite/análise
2.
J Dairy Sci ; 105(2): 1039-1050, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955271

RESUMO

Cow milk (CM) allergy is a worldwide concern. Currently, few studies have been performed on the immunoreactivity of CM and fewer still on the antigenicity of CM in vivo and in vitro. In this study, we assessed the potential allergenicity of enzymatically hydrolyzed CM using in vitro ELISA and oral sensitization and challenge of BALB/c mice. Alcalase-, Protamex-, and Flavourzyme-treated CM (all from Novozymes) diminished IgE binding capacity, with greatest reductions of 56.31%, 50.62%, and 56.45%, respectively. Allergic symptoms and levels of total IgG1 were reduced, and allergic inflammation of the lung, jejunum, and spleen was relieved. Moreover, the numbers of CD8+ T and B220+ cells decreased, and the balance of CD4+ T/CD8+ T cells was effectively regulated. These findings suggest that the potential allergenicity of CM was reduced by enzymatic hydrolysis, and our research will lay a solid foundation for developing high-quality hypoallergenic CM products.


Assuntos
Doenças dos Bovinos , Hipersensibilidade a Leite , Doenças dos Roedores , Alérgenos , Animais , Linfócitos T CD8-Positivos , Bovinos , Feminino , Hidrólise , Imunoglobulina E , Camundongos , Leite , Hipersensibilidade a Leite/veterinária , Proteínas do Leite
3.
J Dairy Sci ; 104(12): 12353-12364, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34538492

RESUMO

Cow milk allergy is one of the most prevalent food allergies worldwide, particularly in infants and children. To the best of our knowledge, minimal research exists concerning the antigenicity of cow milk (CM). This study was performed to evaluate the allergenicity of enzymatically hydrolyzed cow milk (HM) in a BALB/c mouse model. The mice were randomly divided into 5 groups (n = 12/group), which were sensitized with phosphate-buffered saline, CM, and HM (Alcalase-, or Protamex-, or Flavorzyme-treated cow milk; Novo Nordisk; AT, PT, FT, respectively), respectively, using cholera toxin as adjuvant on d 0, 7, 14, 21. On d 28, the test mice were orally challenged with phosphate-buffered saline, CM, and HM (AT, PT, or FT) alone. Anaphylactic symptoms were monitored in the mice. Antibody, cytokine, histamine, and mouse mast cell protease-1 (mMCP-1) levels were measured using enzyme-linked immunosorbent assays. In addition, the numbers of T helper (Th)1 and Th2 cells, as well as the proportions of CD4+CD25+Foxp3+ Treg cells, in mouse spleens were detected using flow cytometry. Statistical significance was determined by one-way ANOVA. The results revealed significant differences between CM- and HM-challenged mice. Among these, the clinical scores of HM-challenged mice (AT, 1.50; PT, 2.00; FT, 1.92) were lower than those of CM-challenged mice (positive control, 2.83), but body weight and temperature of HM-challenged mice were higher than those of CM-challenged mice. In addition, significant reductions of allergen-specific IgE, IgG, histamine, and mMCP-1 were showed in HM-challenged mice, especially for histamine, ranging from 171.42 ng/mL to 214.94 ng/mL. Remarkable reductions of IL-4, IL-5, and IL-13 levels, as well as elevations of interferon-γ and IL-10 levels in the spleens of HM-challenged mice were also detected. Moreover, the number of Th2 cells decreased in the HM-challenged mice, to 2.36% (AT), 1.79% (PT), and 4.03% (FT), respectively, whereas the numbers of Th1 cells (AT, 6.30%; PT, 6.70%; FT, 6.56%) and the proportions of CD4+CD25+Foxp3+Tregs (AT, 8.86%; PT, 9.21%; FT, 9.16%) increased significantly. Our findings indicate that exposure to HM was sufficient to induce a shift toward a Th1 response, thereby reducing potential allergenicity. Importantly, these results will lay a theoretical foundation for the development of hypoallergenic CM products.


Assuntos
Hipersensibilidade a Leite , Alérgenos , Animais , Bovinos , Modelos Animais de Doenças , Feminino , Hidrólise , Imunoglobulina E , Camundongos , Camundongos Endogâmicos BALB C , Leite , Distribuição Aleatória
4.
Sci Rep ; 11(1): 18623, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545177

RESUMO

While enzymatic hydrolysis is an effective method for lowering the antigenicity of cow milk (CM), research regarding the antigenicity and nutritional traits of CM hydrolysate is limited. Here, we evaluated the protein content, amino acid composition, sensory traits, color, flow behavior, and antigenicity of CM following enzymatic hydrolysis. The results showed that enzymatic hydrolysis increased the degree of hydrolysis, destroyed allergenic proteins, including casein, ß-lactoglobulin, and ɑ-lactalbumin, and significantly increased the content of free amino acids and nutritional quality. In particular, the antigenicity of CM was significantly reduced from 44.05 to 86.55% (P < 0.5). Simultaneously, the taste, color, and flow behavior of CM were altered, the sweetness and richness intensity decreased significantly (P < 0.5), and astringency and bitterness were produced. A slightly darker and more yellow color was observed in CM hydrolysate. In addition, apparent viscosity decreased and shear stress significantly increased with increasing shear rate intensity. The results will provide a solid theoretical foundation for the development of high-quality hypoallergenic dairy products.


Assuntos
Aminoácidos/análise , Proteínas do Leite/análise , Leite/química , Valor Nutritivo , Animais , Hidrólise , Leite/metabolismo
5.
Food Sci Nutr ; 9(2): 985-993, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598181

RESUMO

Cow milk (CM) allergy is one of the most common food allergies worldwide; the most abundant CM proteins, such as casein (CN), ß-lactoglobulin (ß-LG), and ɑ-lactalbumin (ɑ-LA), are all potentially allergenic. Reducing the antigenicity of CM continues to be a major challenge. However, previous studies have focused on the antigenicity of individual allergic CM proteins. Thus, in the present study, we aimed to evaluate the effects of different food-grade enzymes on the antigenicity of CN, ß-LG, ɑ-LA in natural CM. The degree of hydrolysis (DH) and molecular mass (MW) distribution of CM hydrolysates were assessed. Additionally, the residual antigenicity of CM hydrolysates was evaluated through enzyme-linked immunosorbent assay and Western blotting with anti-CN, anti-ß-LG, and anti-ɑ-LA rabbit polyclonal antibodies. The results showed that Alcalase- and Protamex-mediated hydrolysis could efficiently reduce the antigenicity of CN, ß-LG, and ɑ-LA, inducing a higher DH, the loss of density of CM proteins, and the increasing levels of low MW (<3 kDa) peptides in CM hydrolysates. Further, Protamex and Alcalase could more efficiently hydrolyze the major allergenic components of CM than the other enzymes, which could represent an advantage for the development of hypoallergenic CM. These findings add further knowledge about the study and development of hypoallergenic CM.

6.
Environ Monit Assess ; 192(7): 451, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32577837

RESUMO

Highway construction is time consuming and complicated. Various environmental issues can be encountered during this process. Therefore, it is necessary to assess the impact of ecologic environment in highway construction. However, the traditional assessment approaches paid more attention to the environmental factors rather than the ecological problems, and the weights of evaluation indexes were assigned with relatively average values, which cannot comprehensively and accurately to assess the impact of ecological environment in highway construction. In order to solve these problems, this paper established a new model to combine improved group AHP and FCE. A total of six main factors and 22 sub-factors from three aspects of social, ecological, and natural environment were identified. The model and index system were applied to the ecological environment impact assessment of the highway from the city of Hanzhong to Lueyang County section in Shaanxi Province, and compared with traditional fuzzy AHP approach to verify the feasibility of this model. The results showed that only the ranking of social and ecological factor changed when comparing with the traditional approach. The weight of social factor determined by the improved approach was 0.2835, while that of the traditional approach was only 0.2365, and the weight difference was 0.047. This improved approach highlighted the importance of social factor and overcame the equal weight distribution of traditional approach, which made the overall weight ratio distribution more reasonable and objective. The comprehensive assessment result was 0.3482, which was in line with the "general impact" level. This was consistent with the actual situation of highway construction. The improved group AHP-FCE model could be used successfully for assessing the impact of the ecological environment in highway construction, and it had good applicability and popularization value in ecological environment assessment.


Assuntos
Meio Ambiente , Monitoramento Ambiental , Agricultura , China , Cidades
7.
Environ Technol ; 41(4): 420-429, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30015569

RESUMO

Most studies conducted nowadays to boost electrode performance in microbial fuel cell (MFC) have focused on carbonaceous materials. The titanium suboxides (Ti4O7, TS) are able to provide a new alternative for achieving better performance in MFC and have been tested and demonstrated in this study. The Ti4O7 electrode with high electrochemical activity was modified by graphene/polyaniline by the constant potential method. Electrogenic microorganisms were more conducive to adhere to the anode electrode due to the presence of graphene/polyaniline. The MFC reactor with polyaniline /graphene modified TS (TSGP) anode achieves the highest voltage with 980 mV, and produces a peak power density of 2073 mW/m2, which is 2.9 and 12.7 times of those with the carbon cloth anode, respectively, at the 1000â€…Ω external resistance. In addition, this study evaluates the effects of anolyte conductivity, pH, and COD on the treatment of oil-containing restaurant wastewater (OCRW) in MFC using TSGP anode. The OCRW amended with 120 mS/cm obtains the lowest internal resistance (160.3 Ω). Increasing the anodic pH, gradually from acidic (pH 5.5) to alkaline conditions (pH 8.0), resulted in a gradual increase in maximum power density to 576.4 mW/m2 and a decrease in internal cell resistance to 203.7 Ω. The MFC at the COD 1500 mg/L could obtain steady-state output voltage during 103 h while removing up to 65.2% of the COD of the OCRW.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Compostos de Anilina , Eletricidade , Eletrodos , Restaurantes , Titânio , Águas Residuárias
8.
Environ Sci Pollut Res Int ; 26(6): 5668-5679, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30612369

RESUMO

Sedimentary soil was selected as the original sample (SOS). The adsorption fractions were obtained by the removal of dissolved organic matter (SRDOM), removal of minerals (SRM), removal of free fat (SRLF), and removal of nonhydrolyzable organic carbon (SNHC) respectively to investigate the adsorption characteristic of oxytetracycline (OTC) by different fractions of organic matter in sedimentary soil. The adsorption mechanism was investigated by elemental analysis, infrared spectra, and UV-visible spectroscopy. The results showed that the DOM in the sedimentary soil inhibited the adsorption of OTC, but the adsorption of different fractions of organic matter was quite different. The sorption kinetics of OTC were fitted to the pseudo-second-order model and the adsorption capacity of each fraction was: SNHC≈SRDOM > SOS > SRLF> SRM. The adsorption processes of OTC by different fractions were spontaneous. Alkaline pH condition had an effect on the adsorption of four fractions except for SNHC, while neutral and acidic pH affects SOS and SRDOM more obviously, the SNHC fraction was almost free from pH varies. Mechanism analysis showed that the main factors determining the adsorption capacity were the aromaticity and polarity of organic matter fractions. For the organic matter-based fractions (SRM, SRLF, and SNHC), the adsorption coefficient was positively correlated with the aromaticity. Furthermore, for SOS and SRDOM based on inorganic minerals, it was not only related to aromaticity, but also the content and composition of inorganic minerals.


Assuntos
Modelos Químicos , Oxitetraciclina/química , Poluentes do Solo/química , Adsorção , Cinética , Minerais , Compostos Orgânicos , Solo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30177592

RESUMO

In this study, the interaction between the humus and two antibiotics was studied by UV-Vis spectroscopy to describe the interaction mechanism and the effects of different environmental factors on the mechanism. Results showed that humic acid (HA) containing more aromatic groups was easily associated with antibiotics. In the HA-OTC, with the increase of the concentration of OTC, there were obvious absorption peaks in the 230⁻260 nm and 330⁻360 nm range, and the absorption band of the HA ultraviolet spectrum underwent a slight blue shift and the absorption intensity increased, demonstrating that a new ground state complex was generated. In the HA-SD, with the increase of SD concentration, an aromatic structure absorption peak appeared in the 190⁻220 nm range, and the peak value increased and the absorption band underwent a red shift, and the aromatization of HA decreased, which enhanced the interaction between the antibiotics and HA. With the increase of pH, the absorption band of HA, HA-OTC and HA-SD ultraviolet spectrum suffered a blue shift, the degree of polymerization of HA molecules decreased, and the number of adsorption binding sites increased, which resulted in the interaction of HA with antibiotics being enhanced. The absorption band of HA, HA-OTC and HA-SD displayed a red shift with the increase of ionic strength, which indicated that the repulsion within HA particles was weakened, and the molecular polymerization was strengthened and therefore, the interaction between antibiotics and HA was inhibited. The UV characteristics of the HA, HA-OTC and HA-SD systems were insensitive to the temperature. This study lays the foundation for better studying the effect of humus on the distribution of antibiotic residues in the environment.


Assuntos
Antibacterianos/química , Monitoramento Ambiental/métodos , Substâncias Húmicas , Adsorção , Concentração de Íons de Hidrogênio , Polimerização , Espectrofotometria Ultravioleta
10.
Artigo em Inglês | MEDLINE | ID: mdl-29996545

RESUMO

The method of Three-Dimensional Excitation Emission Matrix Fluorescence Spectrophotometer was used to identify the interaction mechanism between humic acid (HA) and antibiotics. The effects of antibiotic concentration, temperature, and pH on the bonding strength between HA and antibiotics were investigated. The results showed that with the increase of antibiotics concentration, the quenching effect on HA was enhanced. The quenching of HA by both oxytetracycline (OTC) and sulfadiazine (SD) is a single static quenching of the complexes, and the interaction forces are mainly a hydrogen bond and the van der Waals force. The quenching constant KsvOTC > KsvSD and the binding constant KbOTC > KbSD, indicates that HA has a more obvious quenching effect on OTC. The Kb of HA by OTC ranged from 3.223 × 10³ to 12.784 × 10³ L·mol−1 in the range of 298 K to 313 K, while the Kb of HA by SD ranged from 2.051 × 10³ to 5.533 × 10³ L·mol−1. With the increase of temperature, the quenching constant Ksv and binding constant Kb of both OTC and SD by HA gradually decrease, and the low temperature is beneficial to the interaction. The composite of OTC and HA is more stable than SD. Under neutral alkaline conditions, both OTC and SD had the strongest quenching effect on HA, and the resulting complex was the most stable. However, the Ksv and Kb of HA by OTC were greater than SD in the pH range of the experiment and the pH effect on quenching of HA by OTC (Ksv) was greater than that of SD.


Assuntos
Antibacterianos/química , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Temperatura
11.
Artigo em Inglês | MEDLINE | ID: mdl-29315270

RESUMO

The adsorption behavior and mechanism for the uptake of fluoride ions by untreated and desugared reed residues (roots, stems and leaves) were studied through adsorption experiments, elemental analysis, infrared spectroscopy and surface area analysis. The results showed that the adsorption capacity of untreated and desugared reeds followed the order: desugared roots 2136 mg/kg > desugared leaves 1825 mg/kg > desugared stems 1551 mg/kg > untreated roots 191 mg/kg > untreated stems 175 mg/kg > untreated leaves 150 mg/kg, so adsorption capacity of desugared reeds was larger than that of the untreated reeds. The adsorption kinetic of fluoride ions followed a pseudo-first-order model. A Langmuir model could be used to fit the isothermal adsorption process which was a spontaneous endothermic reaction involving mainly physical adsorption. The ΔG for the uptake of fluoride by the desugared reeds was more negative, so the degree of spontaneity was higher than for the use of the untreated reeds. After samples were desugared, the specific surface area and aromaticity of the reed increased, while the polarity and hydrophilicity decreased, which explained the adsorption amount of desugared reed was higher than that of the untreated. This study enriches techniques and methods of removing fluoride ions from water.


Assuntos
Adsorção/fisiologia , Fluoretos/metabolismo , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Purificação da Água/métodos , China , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA